Blog Archives

Scaling Considerations in Complex Systems and Organizations: Implications

Scale represents size. In a two-dimensional world, it is a linear measurement that presents a nominal ordering of numbers. In other words, 4 is two times two and 6 would be 3 times two. In other words, the difference between 4 and 6 represents an increase in scale by two. We will discuss various aspects of scale and the learnings that we can draw from it. However, before we go down this path, we would like to touch on resource consumption.

scales

As living organisms, we consume resources. An average human being requires 2000 calories of food per day to sustain themselves. An average human being, by the way, is largely defined in terms of size. So it would be better put if we say that a 200lb person would require 2000 calories. However, if we were to regard a specimen that is 10X the size or 2000 lbs., would it require 10X the calories to sustain itself? Conversely, if the specimen was 1/100th the size of the average human being, then would it require 1/100th the calories to sustain itself. Thus, will we consume resources linearly to our size? Are we operating in a simple linear world? And if not, what are the ramifications for science, physics, biology, organizations, cities, climate, etc.?

Let us digress a little bit from the above questions and lay out a few interesting facts. Almost half of the population in the world today live in cities. This is compared to less than 15% of the world population that lived in cities a hundred years ago.  It is anticipated that almost 75% of the world population will be living in cities by 2050. The number of cities will increase and so will the size. But for cities to increase in size and numbers, it requires vast amount of resources. In fact, the resource requirements in cities are far more extensive than in agrarian societies. If there is a limit to the resources from a natural standpoint – in other words, if the world is operating on a budget of natural resources – then would this mean that the growth of the cities will be naturally reined in? Will cities collapse because of lack of resources to support its mass?

What about companies? Can companies grow infinitely?  Is there a natural point where companies might hit their limit beyond which growth would not be possible? Could a company collapse because the amount of resources that is required to sustain the size would be compromised? Are there other factors aside from resource consumption that play into what might cap the growth and hence the size of the company? Are there overriding factors that come into play that would superimpose the size-resource usage equation such that our worries could be safely kept aside? Are cities and companies governed by some sort of metabolic rate that governs the sustenance of life?

gw scale title

Geoffrey West, a theoretical physicist, has touched on a lot of the questions in his book: Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies.     He says that a person requires about 90W (watts) of energy to survive. That is a light bulb burning in your living room in one day.  That is our metabolic rate. However, just like man does not live by bread alone, an average man has to depend on a number of other artifacts that have agglomerated in bits and pieces to provide a quality of life to maximize sustenance. The person has to have laws, electricity, fuel, automobile, plumbing and water, markets, banks, clothes, phones and engage with other folks in a complex social network to collaborate and compete to achieve their goals. Geoffrey West says that the average person requires almost 11000W or the equivalent of almost 125 90W light bulbs. To put things in greater perspective, the social metabolic rate of 11,000W is almost equivalent to a dozen elephants.  (An elephant requires 10X more energy than humans even though they might be 60X the size of the physical human being). Thus, a major portion of our energy is diverted to maintain the social and physical network that closely interplay to maintain our sustenance.  And while we consume massive amounts of energy, we also create a massive amount of waste – and that is an inevitable outcome. This is called the entropy impact and we will touch on this in greater detail in later articles. Hence, our growth is not only constrained by our metabolic rate: it is further dampened by entropy that exists as the Second Law of Thermodynamics.   And as a system ages, the impact of entropy increases manifold. Yes, it is true: once we get old, we are racing toward our death at a faster pace than when we were young. Our bodies are exhibiting fatigue faster than normal.

Scaling refers to how a system responds when its size changes. As mentioned  earlier, does scaling follow a linear model? Do we need to consume 2X resources if we increase the size by 2X? How does scaling impact a Complex Physical System versus a Complex Adaptive System? Will a 2X impact on the initial state create perturbations in a CPS model which is equivalent to 2X? How would this work on a CAS model where the complexity is far from defined and understood because these systems are continuously evolving? Does half as big requires half as much or conversely twice as big requires twice as much? Once again, I have liberally dipped into this fantastic work by Geoffrey West to summarize, as best as possible, the definitions and implications. He proves that we cannot linearly extrapolate energy consumption and size: the world is smattered with evidence that undermines the linear extrapolation model. In fact, as you grow, you become more efficient with respect to energy consumption. The savings of energy due to growth in size is commonly called the economy of scale. His research also suggests two interesting results. When cities or social systems grow, they require an infrastructure to help with the growth. He discovered that it takes 85% resource consumption to grow the systems by 100%. Thus, there is a savings of 15% which is slightly lower than what has been studied on the biological front wherein organisms save 25% as they grow. He calls this sub linear scaling. In contrast, he also introduces the concept of super linear scaling wherein there is a 15% increasing returns to scale when the city or a social system grows. In other words, if the system grows by 100%, the positive returns with respect to such elements like patents, innovation, etc.   will grow by 115%. In addition, the negative elements also grow in an equivalent manner – crime, disease, social unrest, etc. Thus, the growth in cities are supported by an efficient infrastructure that generates increasing returns of good and bad elements.

sublinear

Max Kleiber, a Swiss chemist, in the 1930’s proposed the Kleiber’s law which sheds a lot of light on metabolic rates as energy consumption per unit of time. As mass increases so does the overall metabolic rate but it is not a linear relation – it obeys the power law. It stays that a living organism’s metabolic rate scales to the ¾ power of its mass. If the cat has a mass 100 times that of a mouse, the cat will metabolize about 100 ¾ = 31.63 times more energy per day rather than 100 times more energy per day.  Kleiber’s law has led to the metabolic theory of energy and posits that the metabolic rate of organisms is the fundamental biological rate that governs most observed patters in our immediate ecology. There is some ongoing debate on the mechanism that allows metabolic rate to differ based on size. One mechanism is that smaller organisms have higher surface area to volume and thus needs relatively higher energy versus large organisms that have lower surface area to volume. This assumes that energy consumption occurs across surface areas. However, there is another mechanism that argues that energy consumption happens when energy needs are distributed through a transport network that delivers and synthesizes energy. Thus, smaller organisms do not have as a rich a network as large organisms and thus there is greater energy efficiency usage among smaller organisms than larger organisms. Either way, the implications are that body size and temperature (which is a result of internal activity) provide fundamental and natural constraints by which our ecological processes are governed. This leads to another concept called finite time singularity which predicts that unbounded growth cannot be sustained because it would need infinite resources or some K factor that would allow it to increase. The K factor could be innovation, a structural shift in how humans and objects cooperate, or even a matter of jumping on a spaceship and relocating to Mars.

power law

We are getting bigger faster. That is real. The specter of a dystopian future hangs upon us like the sword of Damocles. The thinking is that this rate of growth and scale is not sustainable since it is impossible to marshal the resources to feed the beast in an adequate and timely manner. But interestingly, if we were to dig deeper into history – these thoughts prevailed in earlier times as well but perhaps at different scale. In 1798 Thomas Robert Malthus famously predicted that short-term gains in living standards would inevitably be undermined as human population growth outstripped food production, and thereby drive living standards back toward subsistence. Humanity thus was checkmated into an inevitable conclusion: a veritable collapse spurred by the tendency of population to grow geometrically while food production would increase only arithmetically. Almost two hundred years later, a group of scientists contributed to the 1972 book called Limits to Growth which had similar refrains like Malthus: the population is growing and there are not enough resources to support the growth and that would lead to the collapse of our civilization. However, humanity has negotiated those dark thoughts and we continue to prosper. If indeed, we are governed by this finite time singularity, we are aware that human ingenuity has largely won the day. Technology advancements, policy and institutional changes, new ways of collaboration, etc. have emerged to further delay this “inevitable collapse” that could be result of more mouths to feed than possible.  What is true is that the need for new innovative models and new ways of doing things to solve the global challenges wrought by increased population and their correspondent demands will continue to increase at a quicker pace. Once could thus argue that the increased pace of life would not be sustainable. However, that is not a plausible hypothesis based on our assessment of where we are and where we have been.

Let us turn our attention to a business. We want the business to grow or do we want the business to scale? What is the difference? To grow means that your company is adding resources or infrastructure to handle increased demand, at a cost which is equivalent to the level of increased revenue coming in. Scaling occurs when the business is growing faster than the resources that are being consumed. We have already explored that outlier when you grow so big that you are crushed by your weight. It is that fact which limits the growth of organism regardless of issues related to scale. Similarly, one could conceivably argue that there are limits to growth of a company and might even turn to history and show that a lot of large companies of yesteryears have collapsed. However, it is also safe to say that large organizations today are by several factors larger than the largest organizations in the past, and that is largely on account of accumulated knowledge and new forms of innovation and collaboration that have allowed that to happen. In other words, the future bodes well for even larger organizations and if those organizations indeed reach those gargantuan size, it is also safe to draw the conclusion that they will be consuming far less resources relative to current organizations, thus saving more energy and distributing more wealth to the consumers.

Thus, scaling laws limit growth when it assumes that everything else is constant. However, if there is innovation that leads to structural changes of a system, then the limits to growth becomes variable. So how do we effect structural changes? What is the basis? What is the starting point? We look at modeling as a means to arrive at new structures that might allow the systems to be shaped in a manner such that the growth in the systems are not limited by its own constraints of size and motion and temperature (in physics parlance).  Thus, a system is modeled at a presumably small scale but with the understanding that as the system is increases in size, the inner workings of emergent complexity could be a problem. Hence, it would be prudent to not linearly extrapolate the model of a small system to that of a large one but rather to exponential extrapolate the complexity of the new system that would emerge. We will discuss this in later articles, but it would be wise to keep this as a mental note as we forge ahead and refine our understanding of scale and its practical implications for our daily consumption.

Emergent Systems: Introduction

The whole is greater than the sum of its parts. “Emergent properties” refer to those properties that emerge that might be entirely unexpected. As discussed in CAS, they arise from the collaborative functioning of a system. In other words, emergent properties are properties of a group of items, but it would be erroneous for us to reduce such systems into properties of atomic elements and use those properties as binding elements to understand emergence Some common examples of emergent properties include cities, bee hives, ant colonies and market systems. Out thinking attributes causal effects – namely, that behavior of elements would cause certain behaviors in other hierarchies and thus an entity emerges at a certain state. However, we observe that a process of emergence is the observation of an effect without an apparent cause. Yet it is important to step back and regard the relationships and draw lines of attribution such that one can concur that there is an impact of elements at the lowest level that surfaces, in some manner, at the highest level which is the subject of our observation.

emergent

Jochenn Fromm in his paper “Types and Forms of Emergence” has laid this out best. He says that emergent properties are “amazing and paradox: fundamental but familiar.” In other words, emergent properties are changeless and changing, constant and fluctuating, persistent and shifting, inevitable and unpredictable. The most important note that he makes is that the emergent property is part of the system and at the same time it might not always be a part of the system. There is an undercurrent of novelty or punctuated gaps that might arise that is inexplicable, and it is this fact that renders true emergence virtually irreducible. Thus, failure is embodied in all emergent systems – failure being that the system does not behave according to expectation. Despite all rules being followed and quality thresholds are established at every toll gate at the highest level, there is still a possibility of failure which suggests that there is some missing information in the links. It is also possible that the missing information is dynamic – you do not step in the same water twice – which makes the study to predict emergent systems to be a rather difficult exercise. Depending on the lens through which we look at, the system might appear or disappear.

emergent cas

There are two types of emergence: Descriptive and Explanatory emergence. Descriptive emergence means that properties of wholes cannot be necessarily defined through the properties of the pasts. Explanatory emergence means laws of complex systems cannot be deduced from the laws of interaction of simpler elements that constitute it. Thus the emergence is a result of the amount of variety embodied in the system, the amount of external influence that weights and shapes the overall property and direction of the system, the type of resources that the system consumes, the type of constraints that the system is operating under and the number of levels of sub-systems that work together to build out the final system. Thus, systems can be benign as in the system is relatively more predictable whereas a radical system is a material departure of a system from expectation. If the parts that constitute a system is independent of its workings from other parts and can be boxed within boundaries, emergent systems become more predictable. A watch is an example of a system that follows the different mechanical elements in a watch that are geared for reading the time as it ultimate purpose. It is a good example of a complex physical system. However, these systems are very brittle – a failure in one point can cascade into a failure of the entire system. Systems that are more resilient are those where the elements interact and learn from one another. In other words, the behavior of the elements excites other elements – all of which work together to create a dance toward a more stable state. They deploy what is often called the flocking trick and the pheromone trick. Flocking trick is largely the emulation of the particles that are close to each other – very similar to the cellular automata as introduced by Neumann and discussed in the earlier chapter. The Pheromone trick reflects how the elements leave marks that are acted upon as signals by other elements and thus they all work together around these signal trails to behave and thus act as a forcing function to create the systems.

emerg strategy

There are systems that have properties of extremely strong emergence. What does Consciousness, Life, and Culture have in common? How do we look at Climate? What about the organic development of cities? These are just some examples of system where determinism is nigh impossible. We might be able to tunnel through the various and diverse elements that embody the system, but it would be difficult to coherently and tangibly draw all set of relationships, signals, effectors and detectors, etc. to grapple with a complete understanding of the system. Wrestling a strong emergent system would be a task that might even be outside the purview of the highest level of computational power available. And yet, these systems exist, and they emerge and evolve. Yet we try to plan for these systems or plan to direct policies to influence the system, not fully knowing the impact. This is also where the unintended consequences of our action might take free rein.

Complex Physical and Adaptive Systems

There are two models in complexity. Complex Physical Systems and Complex Adaptive Systems! For us to grasp the patterns that are evolving, and much of it seemingly out of our control – it is important to understand both these models. One could argue that these models are mutually exclusive. While the existing body of literature might be inclined toward supporting that argument, we also find some degree of overlap that makes our understanding of complexity unstable. And instability is not to be construed as a bad thing! We might operate in a deterministic framework, and often, we might operate in the realms of a gradient understanding of volatility associated with outcomes. Keeping this in mind would be helpful as we deep dive into the two models. What we hope is that our understanding of these models would raise questions and establish mental frameworks for intentional choices that we are led to make by the system or make to influence the evolution of the system.

 

Complex Physical Systems (CPS)

Complex Physical Systems are bounded by certain laws. If there are initial conditions or elements in the system, there is a degree of predictability and determinism associated with the behavior of the elements governing the overarching laws of the system. Despite the tautological nature of the term (Complexity Physical System) which suggests a physical boundary, the late 1900’s surfaced some nuances to this model. In other words, if there is a slight and an arbitrary variation in the initial conditions, the outcome could be significantly different from expectations. The assumption of determinism is put to the sword.  The notion that behaviors will follow established trajectories if rules are established and the laws are defined have been put to test. These discoveries by introspection offers an insight into the developmental block of complex physical systems and how a better understanding of it will enable us to acknowledge such systems when we see it and thereafter allow us to establish certain toll-gates and actions to navigate, to the extent possible, to narrow the region of uncertainty around outcomes.

universe

The universe is designed as a complex physical system. Just imagine! Let this sink in a bit. A complex physical system might be regarded relatively simpler than a complex adaptive system. And with that in mind, once again …the universe is a complex physical system. We are awed by the vastness and scale of the universe, we regard the skies with an illustrious reverence and we wonder and ruminate on what lies beyond the frontiers of a universe, if anything. Really, there is nothing bigger than the universe in the physical realm and yet we regard it as a simple system. A “Simple” Complex Physical System. In fact, the behavior of ants that lead to the sustainability of an ant colony, is significantly more complex: and we mean by orders of magnitude.

ant colony

Complexity behavior in nature reflects the tendency of large systems with many components to evolve into a poised “critical” state where minor disturbances or arbitrary changes in initial conditions can create a seemingly catastrophic impact on the overall system such that system changes significantly. And that happens not by some invisible hand or some uber design. What is fundamental to understanding complex systems is to understand that complexity is defined as the variability of the system. Depending on our lens, the scale of variability could change and that might lead to different apparatus that might be required to understand the system. Thus, determinism is not the measure: Stephen Jay Gould has argued that it is virtually impossible to predict the future. We have hindsight explanatory powers but not predictable powers. Hence, systems that start from the initial state over time might represent an outcome that is distinguishable in form and content from the original state. We see complex physical systems all around us. Snowflakes, patterns on coastlines, waves crashing on a beach, rain, etc.

Complex Adaptive Systems (CAS)

Complex adaptive systems, on the contrary, are learning systems that evolve. They are composed of elements which are called agents that interact with one another and adapt in response to the interactions.

cas

Markets are a good example of complex adaptive systems at work.

CAS agents have three levels of activity. As described by Johnson in Complexity Theory: A Short Introduction – the three levels of activity are:

  1. Performance (moment by moment capabilities): This establishes the locus of all behavioral elements that signify the agent at a given point of time and thereafter establishes triggers or responses. For example, if an object is approaching and the response of the agent is to run, that would constitute a performance if-then outcome. Alternatively, it could be signals driven – namely, an ant emits a certain scent when it finds food: other ants will catch on that trail and act, en masse, to follow the trail. Thus, an agent or an actor in an adaptive system has detectors which allows them to capture signals from the environment for internal processing and it also has the effectors that translate the processing to higher order signals that influence other agents to behave in certain ways in the environment. The signal is the scent that creates these interactions and thus the rubric of a complex adaptive system.
  2. Credit assignment (rating the usefulness of available capabilities): When the agent gathers experience over time, the agent will start to rely heavily on certain rules or heuristics that they have found useful. It is also typical that these rules may not be the best rules, but it could be rules that are a result of first discovery and thus these rules stay. Agents would rank these rules in some sequential order and perhaps in an ordinal ranking to determine what is the best rule to fall back on under certain situations. This is the crux of decision making. However, there are also times when it is difficult to assign a rank to a rule especially if an action is setting or laying the groundwork for a future course of other actions. A spider weaving a web might be regarded as an example of an agent expending energy with the hope that she will get some food. This is a stage setting assignment that agents have to undergo as well. One of the common models used to describe this best is called the bucket-brigade algorithm which essentially states that the strength of the rule depends on the success of the overall system and the agents that constitute it. In other words, all the predecessors and successors need to be aware of only the strengths of the previous and following agent and that is done by some sort of number assignment that becomes stronger from the beginning of the origin of the system to the end of the system. If there is a final valuable end-product, then the pathway of the rules reflect success. Once again, it is conceivable that this might not be the optimal pathway but a satisficing pathway to result in a better system.
  3. Rule discovery (generating new capabilities): Performance and credit assignment in agent behavior suggest that the agents are governed by a certain bias. If the agents have been successful following certain rules, they would be inclined toward following those rules all the time. As noted, rules might not be optimal but satisficing. Is improvement a matter of just incremental changes to the process? We do see major leaps in improvement … so how and why does this happen? In other words, someone in the process have decided to take a different rule despite their experiences. It could have been an accident or very intentional.

One of the theories that have been presented is that of building blocks. CAS innovation is a result of reconfiguring the various components in new ways. One quips that if energy is neither created, nor destroyed …then everything that exists today or will exist tomorrow is nothing but a reconfiguration of energy in new ways. All of tomorrow resides in today … just patiently waiting to be discovered. Agents create hypotheses and experiment in the petri dish by reconfiguring their experiences and other agent’s experiences to formulate hypotheses and the runway for discovery. In other words, there is a collaboration element that comes into play where the interaction of the various agents and their assignment as a group to a rule also sets the stepping stone for potential leaps in innovation.

Another key characteristic of CAS is that the elements are constituted in a hierarchical order. Combinations of agents at a lower level result in a set of agents higher up and so on and so forth. Thus, agents in higher hierarchical orders take on some of the properties of the lower orders but it also includes the interaction rules that distinguishes the higher order from the lower order.

Pivots – The Unholy Grail of Employee Engagement !

Most of you today have heard the word “pivot”. It has become a very ubiquitous word – it pretends to be something which it is not.  And entrepreneurs and VC’s have found oodles of reasons to justify that word.  Some professional CXO’s throw that word around in executive meetings, board meetings, functional meetings … somehow they feel that these are one of the few words that give them gravitas. So “pivot” has become the sexy word – it portrays that the organization and the management is flexible and will iterate around its axis quickly to accommodate new needs … in fact, they would change direction altogether for the good of the company and the customers. After all, agility is everything, isn’t it? And couple that with Lean Startup – the other Valley buzz word … and you have created a very credible persona. (I will deal with the Lean Startup in a later blog and give that its due. As a matter of fact, the concept of “pivot” was introduced by Eric Ries who has also introduced the concept of Lean Startup).

Pivots happen when the company comes out with product that is not the right fit to market. They assess that customers want something different. Tweaking the product to fit the needs of the customer does not constitute a pivot. But if you change the entire product or direction of the company – that would be considered a pivot.

Attached is an interesting link that I came across —

http://www.readwriteweb.com/start/2012/10/when-is-it-time-to-pivot-8-startups-on-how-they-knew-they-had-to-change.php

It gives examples of eight entrepreneurs who believe that they have exercised pivot in their business model. But if you read the case studies closely, none of them did. They tweaked and tweaked and tweaked along the way. The refined their model.  Scripted.com appears to be the only example that comes closest to the concept of the “pivot” as understood in the Valley.

Some of the common pivots that have been laid out by Eric Ries and Martin Zwilling  are as follows 😦http://blog.startupprofessionals.com/2012/01/smart-business-knows-8-ways-to-pivot.html). I have taken the liberty of laying all of these different pivots out that is on Mr. Zwilling’s blog.

  1. Customer problem pivot. In this scenario, you use essentially the same product to solve a different problem for the same customer segment. Eric says that Starbucks famously did this pivot when they went from selling coffee beans and espresso makers to brewing drinks in-house.
  2. Market segment pivot. This means you take your existing product and use it to solve a similar problem for a different set of customers. This may be necessary when you find that consumers aren’t buying your product, but enterprises have a similar problem, with money to spend. Sometimes this is more a marketing change than a product change.
  3. Technology pivot. Engineers always fight to take advantage of what they have built so far. So the most obvious pivot for them is to repurpose the technology platform, to make it solve a more pressing, more marketable, or just a more solvable problem as you learn from customers.
  4. Product feature pivot. Here especially, you need to pay close attention to what real customers are doing, rather than your projections of what they should do. It can mean to zoom-in and remove features for focus, or zoom-out to add features for a more holistic solution.
  5. Revenue model pivot. One pivot is to change your focus from a premium price, customized solution, to a low price commoditized solution. Another common variation worth considering is the move from a one-time product sale to monthly subscription or license fees. Another is the famous razor versus blade strategy.
  6. Sales channel pivot. Startups with complex new products always seem to start with direct sales, and building their own brand. When they find how expensive and time consuming this is, they need to use what they have learned from customers to consider a distribution channel, ecommerce, white-labeling the product, and strategic partners.
  7. Product versus services pivot. Sometimes products are too different or too complex to be sold effectively to the customer with the problem. Now is the time for bundling support services with the product, education offerings, or simply making your offering a service that happens to deliver a product at the core.
  8. Major competitor pivot. What do you do when a major new player or competitor jumps into your space? You can charge ahead blindly, or focus on one of the above pivots to build your differentiation and stay alive.

Now please re-read all of the eight different types of “pivot” carefully! And reread again. What do you see? What do you find if you reflect upon these further? None of these are pivots! None! All of the eight items fit better into Porter’s Competition Framework. You are not changing direction. You are not suddenly reimagining a new dawn. You are simply tweaking as you learn more. So the question is – Is the rose by any other name still a rose? The answer is yes!  Pivot means changing direction … in fact, so dramatically that the vestiges of the early business models fade away from living memory.  And there have been successful pivots in recent business history.  But less so … and for those who did, you will likely have not heard of them at all. They have long been discarded in the ash heap of history.

Great companies are established by leaders that have vision. The vision is the aspirational goal of the company. The vision statement reflects the goal in a short and succinct manner.  Underlying the vision, they incorporate principles, values, missions, objectives … but they also introduce a corridor of uncertainty. Why? Because the future is rarely a measure or a simple extrapolation of expressed or latent needs of customers in the past.  Apple, Microsoft, Oracle, Salesforce, Facebook, Google, Genentech, Virgin Group, Amazon, Southwest Airlines etc. are examples of great companies who have held true to their vision. They have not pivoted. Why? Because the leaders (for the most part- the founders) had a very clear and aspirational vision of the future! They did not subject themselves to sudden pivots driven by the “animal spirits” of the customers. They have understood that deep waters run still, despite the ripples and turbulence on the surface. They have honed and reflected upon consumer behavior and economic trends, and have given significant thought before they pulled up the anchor. They designed and reflected upon the ultimate end before they set sail. And once at sea, and despite the calm and the turbulence, they never lost sight of the aspirational possibilities of finding new lands, new territories, and new cultures. In fact, they can be compared to the great explorers or great writers – search for a theme and embark upon the journey …within and without.  They are borne upon consistency of actions toward attainment and relief of their aspirations.

Now we are looking at the millennial generation. Quick turnarounds, fast cash, prepare the company for an acquisition and a sale or what is commonly called the “flip” … everything is super-fast and we are led to believe that this is greatness. Business plans are glibly revised. This hotbed of activity and the millennial agility to pivot toward short-term goal is the new normal — pivot is the concept that one has to be ready for and adopt quickly. I could not disagree more.  When I hear pivots … it tells me that the founders have not deliberated upon the long-term goals well. In fact, it tells me that their goals are not aspirational for the most part. They are what we call in microeconomic theory examples of contestable agents in the market of price-takers. They rarely, very rarely create products that endure and stand the test of time!

So now let us relate this to organizations and people. People need stability. People do not seek instability – at least I can speak for a majority of the people. An aspirational vision in a company can completely destabilize a certain market and create tectonic shifts … but people gravitate around the stability of the aspirational vision and execute accordingly. Thus, it is very important for leadership to broadcast and needle this vision into the DNA of the people that are helping the organization execute.  With stability ensured, what then happens are the disruptive innovations!  This may sound counter-factual! Stability and disruptive innovations!  How can these even exist convivially together and be spoken in the same breath!  I contend that Innovation occurs when organizations allow creativity upon bedrock of discipline and non-compromising standards.  A great writer builds out the theme and let the characters jump out of the pages!

When you have mediocrity in the vision, then the employees have nothing aspirational to engage to. They are pockets sometimes rowing the boat in one direction, and at other times rowing against one another or in a completely direction. Instability is injected into the organization.  But they along with their leaders live behind the veil of ignorance – they drink the Red Bull and follow the Pied Piper of Hamelin.  So beware of the pivot evangelists!

Niche Networks – a natural evolution and the governing rules

Democracy is defined as a form of government in which the supreme power is vested in the people and exercised directly by them or by their elected agents under a free electoral system. This abstraction goes back to the old Greek states that spontaneously emerged and coalesced to form one of the greatest civilizations in world history. This was further refined by the great English political philosophers and more importantly, put to test in the pamphlets that led to the founding of the United States of America. The debates that reverberated in the pages of the Federalist Papers still continue to be amplified over the years into the political theater today … and more importantly; it plays a big role in the technology theater.

I have, over the years, found it a fascinating exercise to connect the dots. It is my firm belief that learning can be ported from many different and seemingly discrete and distant disciplines … to connect them is not a Nietzschian leap or a metamorphosis from a man to superman thinking. It is forging creativity, introducing dialogue between the wedges, creating an infrastructure and support system to promote association and free thought … and the abstractions would thus reduce to more concrete and practical rules for the advancement in daily living. Thus, despite being in finance, I have kept my sensibilities open to a plethora of fuzzy possibilities that may affect my realm, as much as explore the fuzzy stretches of finance that may affect the concrete realities in other areas … either in or outside of the corporate environment. I am enamored of the intellectual elasticity that has become a generational bar that the open society has enabled through technology.

So as we enter the domain of technology and mesh it with the advances in our understanding of an idyllic society with fine workings of democracy, we have to keep a few things in mind. These few things are important enough to understand in order to build out product and service solutions that are injected into mass gatherings and conversations, albeit in the virtual space. They are as follows:

1) Privacy: Man is a social animal. That being said, we crave for society but we seek solace in ourselves. Hence, science and religion coexist happily. There is never so much of each to drive the other out, since the final questions that one ultimately asks is meta-scientific. In seeking our silent spaces, the proxy in a social network is privacy. We impute value to this quaint notion which has different magnitudes across different cultures … however, my contention is that a true democratic system will allow its citizenry to preserve their spaces and enforce property rights upon such spaces. If a social network is a microcosm … an experiment playing out in the petri dish of events in our world, the network will have to embrace the democratic ideals and ensure privacy. The privacy can be protected through statutory means, business rules implemented in the system, technical do’s and don’ts, self-governing protocols, etiquettes for mutual understanding etc. These are the attributes that the right network will imbibe in the framing and final design of its own emergence.

2) Ease of Use: It is upon the network to enable the participants to speak and quickly adopt to common practices, learn new languages, adapt to changes, and to be wooed by the beauty of minimalism and simplicity. Urban planning is a lot different today than it was a 100 years ago. The good old times were not really the good old times … we live today in the best of times, and it will only get better. We are dealing with the consequences of advances in medical sciences, disaster recovery, and a general increase in income, et al… all of these translating into a burgeoning global population. Despite this and the adverse impact on the environment and having aptly defined the gloom and doom prophecy of Rome diatribe – we are not under the shadow of a Tower of Babel, lost in a litany of tongues. Rather, we are happily skewed toward embracing the common denominator, the ultimate leveler, the common theme, a grand platform. This de facto standardization of diverse orientations is making us more proficient in people finding greater meaning in their lives. The virtual network exist to allow such meaning, if the participants use it accordingly and most importantly … be able to step back and reflect upon the dialogues that they see or participate in. So the network must appeal in a manner to advance the common parlance … the global village is less a village … it is a megapolis of spontaneous evolution of innovation and knowledge. The pace of innovation in the next 10 years will outpace innovation over the last 100 years.

3) Mass Psychology – When I read Malcolm Gladwell’s Blink, I recall thinking that indeed … years of experience can effectively shortcut a process to arrive at conclusions that may be correct. Arriving to a meaningfully correct judgment happens despite one not working through heaps and layers of data, analysis, observations etc. Thereafter, I read Crowdsourcing by Howe and that opened up another world … there indeed is this wisdom of the crowds. I have, as you recall, referred to Hayek who had always been optimistic toward an aggregate marketplace of opinions … Crowdsourcing empirically confirmed that theses. So now one need not necessary get to Blink when there are infrastructures setup to crowd source reference points to get you meaningfully within a safe distance from a “blink” conclusion, the latter fermented over years of experience. A great network is the one that enables such crowdsourcing to occur… functionally and aesthetically. It takes years out of the equation; it advances knowledge at stupendous pace. Somewhere I read that innovation in the next 10 years will outpace innovation over the last 100 years … I imagine that the network of connections, social or otherwise, across a standard operational platform is enabling this effusion of ideas and innovation that is and will continue to permeate our daily living.

4) Communication Channels: Finally, the virtual network must create a flurry of communication channels. I am abstracting communication to a higher level … to a plane wherein the underlying meaning is to exchange messages that drive people to act toward something. Communication is not passive; even it would engender a dialogue as commonplace or existential as “Who am I”. The value-based virtual network ought to be responsible for parsing all the touch points that impact the sensibilities of a user. These sensibilities constitute the perennial target … but unfortunately it is a moving target since new contexts emerge rapidly and may change the underlying value from which the sensibilities are wrought.

So the networks that we know today – the big elephants in the room: FB, LinkedIn, Twitter have to reinvent themselves to go deeper into capturing the intrinsic value of the participant. Or it may serve the system of surfacing the extrinsic and articulated needs of the participants … thus leaving open the possibility of ushering a new generation of niche networks that can tap into the god and the devil within us. As long as it proscribes to the four rules outlined above, I am optimistic that these cocktails will advance us sooner to the better and more productive lives in the future.